Robust Hyperspectral Image Classification by Multi-Layer Spatial-Spectral Sparse Representations
نویسندگان
چکیده
منابع مشابه
Robust Hyperspectral Image Classification by Multi-Layer Spatial-Spectral Sparse Representations
Sparse representation (SR)-driven classifiers have been widely adopted for hyperspectral image (HSI) classification, and many algorithms have been presented recently. However, most of the existing methods exploit the single layer hard assignment based on class-wise reconstruction errors on the subspace assumption; moreover, the single-layer SR is biased and less stable due to the high coherence...
متن کاملSpectral-Spatial Response for Hyperspectral Image Classification
This paper presents a hierarchical deep framework called Spectral-Spatial Response (SSR) to jointly learn spectral and spatial features of Hyperspectral Images (HSIs) by iteratively abstracting neighboring regions. SSR forms a deep architecture and is able to learn discriminative spectral-spatial features of the input HSI at different scales. It includes several existing spectral-spatial-based ...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملA Robust Sparse Representation Model for Hyperspectral Image Classification †
Sparse representation has been extensively investigated for hyperspectral image (HSI) classification and led to substantial improvements in the performance over the traditional methods, such as support vector machine (SVM). However, the existing sparsity-based classification methods typically assume Gaussian noise, neglecting the fact that HSIs are often corrupted by different types of noise in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2016
ISSN: 2072-4292
DOI: 10.3390/rs8120985